Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass (Micropterus salmoides) Back Muscle without Compromising Growth

Author:

Yi Changguo1ORCID,Huang Dongyu2,Yu Heng1,Gu Jiaze1,Liang Hualiang12ORCID,Ren Mingchun12

Affiliation:

1. Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China

2. Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract

This study was designed to investigate the effects of enzymatically hydrolyzed poultry by-products (EHPB) on the growth and muscle quality of largemouth bass. Different concentrations of EHPB (0.00, 3.10, 6.20, 9.30, and 12.40%) were added to replace fishmeal (0.00 (control), 8.89 (EHPB1), 17.78 (EHPB2), 26.67 (EHPB3), and 35.56% (EHPB4)), respectively, in dietary supplementation. The results revealed that the growth performance and muscle amino acid and fatty acid remained unaltered in EHPB1 (p > 0.05). EHPB1 showed significant reduction in muscle hardness, gumminess, chewiness, and muscle fiber count and exhibited a significant increase in muscle fiber volume. The decrease in muscle hardness, gumminess, and chewiness means that the muscle can have a more tender texture. The expression of protein metabolism-related genes reached the highest levels in EHPB1 and EHPB2 (p < 0.05). The mRNA levels of s6k and igf-1 in EHPB2 and EHPB1 were significantly lower than those in the control group. Compared to the control group, the expression of muscle production-associated genes paxbp-1 was higher in EHPB1, and myod-1, myf-5, and syndecan-4 were higher in EHPB2. The mRNA levels of muscle atrophy-related genes, in EHPB4 and EHPB2, were significantly lower than those in the control group. Therefore, the EHPB1 group plays a role in promoting the expression of genes related to muscle formation. In summary, replacing 8.89% of fishmeal with EHPB in feed has no effect on growth and may improve back muscle quality in largemouth bass.

Funder

National Key R & D Program of China

earmarked fund for CARS

National Natural Science Foundation of China

Transformation of Technological Innovation Engineering Achievements in the Aquatic Industry

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3