The Immunomodulatory Effect of β-Glucan Depends on the Composition of the Gut Microbiota

Author:

Sung Miseon1,Yoon Yohan12ORCID,Lee Jeeyeon3ORCID

Affiliation:

1. Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea

2. Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea

3. Department of Food & Nutrition, Dong-eui University, Busan 47340, Republic of Korea

Abstract

This study aimed to elucidate the relationship between the immunomodulatory effects of β-glucan and the composition of gut microbiota in mice. The mice were fed a diet containing β-glucan for 3 weeks, and feces, blood, and tissues were then collected to analyze the immunomodulatory effect and gut microbiota composition. Based on the results of the analysis of the expression level of immune-associated proteins, the high immunomodulatory effect group (HIE) and low immunomodulatory effect group (LIE) were categorized. Before the β-glucan diet, the proportions of the phylum Bacteroidota, family Muribaculaceae, and family Lactobacillaceae were significantly higher in HIE than in LIE. Furthermore, the genus Akkermansia was absent before the β-glucan diet and increased after β-glucan diet. These microbes had the ability to metabolize β-glucan or were beneficial to health. In conclusion, our findings demonstrate that variation in the composition of gut microbiota among individuals can result in varying expressions of β-glucan functionality. This outcome supports the notion that β-glucan may be metabolized through diverse pathways by gut microbes originally possessed by mice, subsequently producing various metabolites, such as short-chain fatty acids. Alternatively, the viscosity of the intestinal mucosa could be enhanced by β-glucan, potentially promoting the growth of certain bacteria (e.g., the genus Akkermansia). This study provides insights into the intricate interplay between β-glucan, gut microbiota, and immunomodulation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3