Characterization of a Dihydromyricetin/α-Lactoalbumin Covalent Complex and Its Application in Nano-emulsions

Author:

Lu Ninghai1,Wu Limin1,Zhen Shiyu2,Liu Benguo2ORCID

Affiliation:

1. School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China

2. School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

A dihydromyricetin (DMY)/α-lactoalbumin (α-La) covalent complex was prepared and characterized, and its application in nano-emulsions was also evaluated in this study. The results suggested that the covalent complex could be obtained using the alkaline method. The UV and IR spectra confirmed the formation of the covalent complex, and the amount of DMY added was positively correlated with the total phenol content of the complex. The complex had an outstanding 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical-scavenging ability, reducing power and α-glucosidase inhibitory activity, which were positively related to its total phenol content. The complex could be used as an emulsifier to stabilize the β-carotene-loaded nano-emulsion. The stability and β-carotene-protective capacity of the nano-emulsion stabilized by the complex were also positively related to the total phenol content of the complex, being higher than those of the nano-emulsion developed using α-La. Our results provide a reference for the construction of a new food delivery system and extend the applications of α-La and DMY in foods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province of China

Key Scientific Research Project of Colleges and Universities in Henan Province of China

Scientific and Technological Project in Henan Province of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3