Screening of Lactiplantibacillus plantarum 67 with Strong Adhesion to Caco-2 Cells and the Effects of Protective Agents on Its Adhesion Ability during Vacuum Freeze Drying

Author:

Chen Dawei123ORCID,Guo Congcong12,Ren Chenyu12,Xia Zihan12,Xu Haiyan12,Qu Hengxian12ORCID,Wa Yunchao12,Guan Chengran12ORCID,Zhang Chenchen12,Qian Jianya12ORCID,Gu Ruixia12

Affiliation:

1. College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China

2. Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China

3. Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224000, China

Abstract

Adhesion to the intestinal tract provides the foundation for Lactobacillus to exert its benefits. Vacuum freeze-drying (VFD) is currently one of the main processing methods for Lactobacillus products. Therefore, the effects of VFD on the adhesion and survival of Lactiplantibacillus plantarum 67 were investigated in this study. The results show that L. plantarum 67 exhibits remarkable tolerance following successive exposure to simulated saliva, gastric juice and intestinal juice, and also has a strong adhesion ability to Caco-2 cells. The adhesion and survival rates of L. plantarum 67 significantly decreased after VFD in phosphate-buffered saline (PBS), whereas they significantly increased in protective agents (PAs) (p < 0.05). Scanning electron microscope observations show that L. plantarum 67 aggregated more to Caco-2 cells in PAs than in PBS, and its shape and size were protected. Proteomics detection findings indicated that differentially expressed proteins (DEPs) related to adhesins and vitality and their pathways in L. plantarum 67 were significantly affected by VFD (p < 0.05). However, the expression of DEPs (such as cold shock protein, cell surface protein, adherence protein, chitin-binding domain and extracellular transglycosylase, membrane-bound protein) was improved by PAs. Compared with PBS, the PAs significantly adjusted the phosphotransferase system and amino sugar and nucleotide sugar metabolism pathways (p < 0.05). VFD decreased the adhesion and vitality of L. plantarum 67, while the PAs could exert protective effects by regulating proteins and pathways related to adhesion and vitality.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Key Laboratory of Probiotics and Dairy Deep Processing of Yangzhou

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3