Effects of Different Molecular Weight Oxidized Dextran as Crosslinkers on Stability and Antioxidant Capacity of Curcumin-Loaded Nanoparticles

Author:

Shen Dongyan1,Chen Hongzhou2,Li Mingwei1,Yu Ling1,Li Xiangfei1,Liu Huawei1,Hu Qiaobin3,Lu Yingjian1

Affiliation:

1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China

2. Anhui Guotaizhongxin Testing Technology Co., Ltd., 22nd Floor, Huishang Square, Hefei 230041, China

3. College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, AZ 85004, USA

Abstract

Curcumin is a polyphenolic compound that has been widely investigated for its health benefits. However, the clinical relevance of curcumin is limited due to its low water solubility and inefficient absorption. Therefore, curcumin is often encapsulated in nanocarriers to improve its delivery and function. In this study, composite nanoparticles composed of stearic acid-modified chitosan (SA-CS) and sodium caseinate (NaCas) were formed using sodium periodate-oxidized dextran with different molecular weights as a crosslinking agent. The effects of oxidized dextran (Odex) with different molecular weights on the composite nanoparticles were compared. The optimal SA-CS/NaCas/Odex composite nanoparticle (NPO) was obtained using an Odex (150 kDa)-to-SA-CS mass ratio of 2:1. Its size, polydispersity index (PDI), and zeta potential (ZP) were 130.2 nm, 0.149, and 25.4 mV, respectively. The particles were highly stable in simulated gastric fluid (SGF) in vitro, and their size and PDI were 172.3 nm and 0.263, respectively. The encapsulation rate of NPO loaded with curcumin (Cur-NPO) was 93% under optimal ultrasonic conditions. Compared with free curcumin, the sustained release of Cur-NPO significantly reduced to 17.9%, and free-radical-scavenging ability improved to 78.7%. In general, the optimal prepared NPO exhibited good GI stability and has potential applications in the formulation of orally bioactive hydrophobic drugs.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu, a specially appointed professor

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3