Affiliation:
1. College of Food Science, South China Agricultural University, Guangzhou 510642, China
Abstract
Summer green tea (SGT) has a low cost and high annual yield, but its utilization rate is limited due to suboptimal quality. The aim of this study is to enhance the flavor of SGT using fermentation with A. niger RAF106 while examining changes in its metabolites during this process. The results revealed an elevation in the content of alcohol, alkanes, and nitroxides in tea leaves following the process of fermentation. The predominant volatile compounds identified in tea leaves after undergoing a 6-day fermentation period were linalool, (Z)-α, α, 5-trimethyl-5-vinyltetrahydrofuran-2-methanol, (E)-linalool oxide (furan type), linalool oxide (pyran type), and theapyrrole. These compounds exhibited significant increases of 31.48%, 230.43%, 225.12%, 70.71%, and 521.62%, respectively, compared to the non-fermented control group (CK). The content of non-ester catechins, soluble sugars, and total flavonoids reached their peak on the 4th day of fermentation, exhibiting significant increases of 114.8%, 95.59%, and 54.70%, respectively. The content of gallic acid and free amino acids reached their peak on the 6th day of fermentation, exhibiting significant increases of 3775% and 18.18%, respectively. However, the content of ester catechin decreased by 81.23%, while caffeine decreased by 7.46%. The content of lactic acid, acetic acid, and citric acid in tea after fermentation was 421.03%, 203.13%, and 544.39% higher than before fermentation, respectively. The present study offers a fresh approach for the advancement of SGT.
Funder
Guangdong Province key areas research and development plan project
National Natural Science Youth Fund of China
Guangdong Province’s Key Area Research and Development Program
Guangdong Province Chinese Medicine Bureau project
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献