Inorganic Selenium Transformation into Organic Selenium by Monascus purpureus

Author:

Sun Nan1ORCID,Dang Hui1,Zhang Yuyao1,Yang Mengjie1,Zhang Wei1,Zhao Yu1,Zhang Haisheng1,Ji Hua1,Zhang Baoshan2

Affiliation:

1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China

2. Research Center of Fruit and Vegetable Deep-Processing Technology, Xi’an 710119, China

Abstract

Selenium (Se) is a trace element that plays a crucial role in metabolism; a lack of selenium reduces the body’s resistance and immunity, as well as causes other physiological problems. In this study, we aim to identify favorable conditions for improving organic selenium production. The functional microbe Monascus purpureus, which is widely used in food production, was employed to optimize selenium-enriched culture conditions, and its growth mode and selenium-enriched features were investigated. Spectrophotometry, inductively coupled plasma optical emission spectrometry (ICP-OES), and HPLC (High-Performance Liquid Chromatography) were used to determine the effects of various doses of sodium selenite on the selenium content, growth, and metabolism of M. purpureus, as well as the conversion rate of organic selenium. The best culture parameters for selenium-rich M. purpureus included 7.5 mg/100 mL of selenium content in the culture medium, a pH value of 6.8, a culture temperature of 30 °C, and a rotation speed of 180 rpm. Under ideal circumstances, the mycelia had a maximum selenium concentration of approximately 239.17 mg/kg, with organic selenium accounting for 93.45%, monacoline K production reaching 70.264 mg/L, and a secondary utilization rate of external selenium of 22.99%. This study revealed a novel biological route—selenium-rich M. purpureus fermentation—for converting inorganic selenium into organic selenium.

Funder

Selenium Enrichment “236” Project of China Selenium Industry Research Institute

Key R&D Plan Projects in Shaanxi Province

Key R&D Projects in Shaanxi Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3