Characterization of Cationic Modified Short Linear Glucan and Fabrication of Complex Nanoparticles with Low and High Methoxy Pectin

Author:

Li WenhuiORCID,Yu Ying,Peng JielongORCID,Dai Ziyang,Wu Jinhong,Wang Zhengwu,Chen Huiyun

Abstract

In this study, we chemically modified the short linear glucan (SLG) using the 3-chloro-2-hydroxypropyl trimethylammonium chloride to introduce a positive surface charge via cationization (CSLG). We then prepared CSLG-based binary nanocomplex particles through electrostatic interactions with low and high methoxyl pectin. The two new types of binary nanocomplex were comprehensively characterized. It was found that the nanocomplex particles showed a spherical shape with the particle size of <700 nm, smooth surface, homogeneous distribution, and negative surface charge. Fourier transform infrared spectroscopy (FTIR) revealed that the driving forces to form nanocomplex were primarily electrostatic interactions and hydrogen bonding. In addition, increasing the CSLG concentration in the nanocomplex significantly enhanced both thermal stability and digestive stability. By comparing the two complex nanoparticles, the HMP-CSLG has a larger particle size and better stability under the GI condition due to the high content of the methoxy group. Additionally, the HMP-CSLG nanoparticle has a higher encapsulation efficiency and slower release rate under simulated gastrointestinal fluid for tangeretin compared with the LMP-CSLG. These results provide new insights into designing the CSLG-based nanocomplex as a potential oral delivery system for nutraceuticals or active ingredients.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3