Simulation-Oriented Analysis and Modeling of Distracted Driving

Author:

Zhu Yixin1,Yue Lishengsa1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering, Department of Transportation Engineering, Tongji University, Ministry of Education, No. 4800, Cao’an Road, Shanghai 201804, China

Abstract

Distracted driving significantly affects the efficiency and safety of traffic flow. Modeling distracted driving behavior in microscopic traffic flow simulation is essential for understanding its critical impacts on traffic flow. However, due to the influence of various external factors and the considerable uncertainties in behavior characteristics, modeling distracted driving behavior remains a challenge. This study proposed a model which incorporates distraction features into the microscopic traffic flow model to simulate distracted driving behavior. Specifically, the study first examines the characteristics of distracted driving, including the intervals and durations of distraction events, as well as the patterns and environments of distraction. It then introduces distraction parameters into the Intelligent Driver Model (IDM), including reaction time delays and perception deviations in both speed difference and following distance. These parameters are quantified by probabilistic distributions to reflect the uncertainty and individual differences in driving behavior. The model is calibrated and validated using 772 distracted following events from the Shanghai Naturalistic Driving Study (SH-NDS) data. Three patterns of distraction (excessive, moderate, mild) are distinguished and modeled separately. The results show that the model’s accuracy surpasses that of the IDM under various road types and traffic volumes, with an average improvement in model accuracy of about 11.30% on expressways with high traffic volume, 4.54% on expressways with low traffic volume, and 4.46% on surface roads. Meanwhile, the model can effectively simulate the variations in reaction times and perceptual deviations in both speed and following distance for different distraction modes at the individual level, maintaining consistency with reality. Finally, the study simulates distracted driving behavior under different road environments and traffic volumes to explore the impact of distracted driving on traffic flow. The simulation results indicate that an increase in the proportion of distraction reduces the efficiency and safety of traffic flow, which is consistent with real-world observations. Since the model considers human distraction factors, it can generate more dangerous driving scenarios in simulations, which holds significant importance for safety-related research. The findings from this study are expected to be helpful for understanding distracted driving behavior and mitigate its negative influence on the efficiency and safety of traffic flow.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3