Monocular Depth Estimation Based on Dilated Convolutions and Feature Fusion

Author:

Li Hang1ORCID,Liu Shuai12ORCID,Wang Bin1ORCID,Wu Yuanhao1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Dong Nanhu Road 3888, Changchun 130033, China

2. Navigation College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China

Abstract

Depth estimation represents a prevalent research focus within the realm of computer vision. Existing depth estimation methodologies utilizing LiDAR (Light Detection and Ranging) technology typically obtain sparse depth data and are associated with elevated hardware expenses. Multi-view image-matching techniques necessitate prior knowledge of camera intrinsic parameters and frequently encounter challenges such as depth inconsistency, loss of details, and the blurring of edges. To tackle these challenges, the present study introduces a monocular depth estimation approach based on an end-to-end convolutional neural network. Specifically, a DNET backbone has been developed, incorporating dilated convolution and feature fusion mechanisms within the network architecture. By integrating semantic information from various receptive fields and levels, the model’s capacity for feature extraction is augmented, thereby enhancing its sensitivity to nuanced depth variations within the image. Furthermore, we introduce a loss function optimization algorithm specifically designed to address class imbalance, thereby enhancing the overall predictive accuracy of the model. Training and validation conducted on the NYU Depth-v2 (New York University Depth Dataset Version 2) and KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) datasets demonstrate that our approach outperforms other algorithms in terms of various evaluation metrics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3