Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS

Author:

Ganeshkumar S.,Kumar S. Dharani,Magarajan U.,Rajkumar S.ORCID,Arulmurugan B.ORCID,Sharma ShubhamORCID,Li ChangheORCID,Ilyas R. A.ORCID,Badran Mohamed FathyORCID

Abstract

The advancement of 3D-printing technology has ushered in a new era in the production of machine components, building materials, prototypes, and so on. In 3D-printing techniques, the infill reduces the amount of material used, thereby reducing the printing time and sustaining the aesthetics of the products. Infill patterns play a significant role in the property of the material. In this research, the mechanical properties of specimens are investigated for gyroid, rhombile, circular, truncated octahedron, and honeycomb infill structures (hexagonal). Additionally, the tensile properties of PLA 3D-printed objects concerning their infill pattern are demonstrated. The specimens were prepared with various infill patterns to determine the tensile properties. The fracture of the specimen was simulated and the maximum yield strengths for different infill structures and infill densities were determined. The results show the hexagonal pattern of infill holds remarkable mechanical properties compared with the other infill structures. Through the variation of infill density, the desired tensile strength of PLA can be obtained based on the applications and the optimal weight of the printed parts.

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3