Flexible Glassy Carbon Multielectrode Array for In Vivo Multisite Detection of Tonic and Phasic Dopamine Concentrations

Author:

Castagnola Elisa,Robbins Elaine M.ORCID,Wu BingchenORCID,Pwint May YoonORCID,Garg RaghavORCID,Cohen-Karni TzahiORCID,Cui Xinyan TracyORCID

Abstract

Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.

Funder

Defense Advanced Research Projects Agency

National Institute of Health

National Science Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3