Classification of Dysphonic Voices in Parkinson’s Disease with Semi-Supervised Competitive Learning Algorithm

Author:

Bao Guidong,Lin Mengchen,Sang Xiaoqian,Hou Yangcan,Liu Yixuan,Wu YunfengORCID

Abstract

This article proposes a novel semi-supervised competitive learning (SSCL) algorithm for vocal pattern classifications in Parkinson’s disease (PD). The acoustic parameters of voice records were grouped into the families of jitter, shimmer, harmonic-to-noise, frequency, and nonlinear measures, respectively. The linear correlations were computed within each acoustic parameter family. According to the correlation matrix results, the jitter, shimmer, and harmonic-to-noise parameters presented as highly correlated in terms of Pearson’s correlation coefficients. Then, the principal component analysis (PCA) technique was implemented to eliminate the redundant dimensions of the acoustic parameters for each family. The Mann–Whitney–Wilcoxon hypothesis test was used to evaluate the significant difference of the PCA-projected features between the healthy subjects and PD patients. Eight dominant PCA-projected features were selected based on the eigenvalue threshold criterion and the statistical significance level (p < 0.05) of the hypothesis test. The SSCL algorithm proposed in this paper included the procedures of the competitive prototype seed selection, K-means optimization, and the nearest neighbor classifications. The pattern classification experimental results showed that the proposed SSCL method can provide the excellent diagnostic performances in terms of accuracy (0.838), recall (0.825), specificity (0.85), precision (0.846), F-score (0.835), Matthews correlation coefficient (0.675), area under the receiver operating characteristic curve (0.939), and Kappa coefficient (0.675), which were consistently better than those results of conventional KNN or SVM classifiers.

Funder

Fundamental Research Funds for the Central Universities of China

Fujian Provincial Innovation Strategy Research Project

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3