New Model and Finite Element Analysis of the Anti-Extrusion Strength of Backfill Drilling Pipelines

Author:

Li Hao1ORCID,Wang Hongjiang1,Liu Chunkang1

Affiliation:

1. College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Currently, in some domestic and foreign mines, the backfill drilling pipeline experiences a rupture phenomenon even when the wear degree is low. This results in a delay in production due to the filling becoming ‘sick’. This paper presents, for the first time, the damage mechanism from a mechanical perspective and re-derives the anti-extrusion strength model of the backfill drilling pipeline. We investigate the influence of the law on the anti-extrusion strength of pipelines from the perspective of strata and cement rings. We then verify the theoretical and simulation results through engineering examples. The results demonstrate that the Mises stress criterion is a suitable modification principle for the anti-extrusion strength model of the backfill drilling pipeline. The anti-extrusion strength of the pipeline is related to the elastic modulus and Poisson’s ratio of the stratum, and the thickness of the cement ring. It is negatively affected by the depth of the stratum. For hard strata, a cement ring with a smaller elastic modulus is suitable, while for soft stratum, a cement ring with a larger elastic modulus is recommended. When the missing angle of the cement ring is less than 60°, the stress concentration factor increases up to 2.2. The stress unloading capacity of the cement ring ranges from 32.7% to 37.8%, and optimal performance of the cement ring is achieved when it has high strength and low rigidity. The backfill filling pipeline of a copper mine abroad was destroyed due to external extrusion force exceeding its anti-extrusion strength value. The modified pipeline anti-extrusion strength model is 18.2% higher than the pipeline API strength value. This finding can inform the design of the backfill filling pipeline for China’s kilometer-deep wells in the future.

Funder

Key Program of National Natural Science Foundation of China

Publisher

MDPI AG

Reference29 articles.

1. Research and exploration of deep rock mass mechanics;Xie;J. Rock Mech. Eng.,2015

2. Exploration of Strengthening Fluidized Leaching Process of Deep Ground Metal Mines and Geothermal Collaborative Mining;Wang;J. Eng. Sci.,2022

3. The Current Situation and Development Strategy of Deep Intelligent Mining in Metal Mines;Cai;Chin. J. Nonferrous Met.,2021

4. Research Status and Development Trends of Solid Waste Filling in Metal Mines;Cheng;J. Eng. Sci.,2022

5. The current situation and trend of paste filling technology;Wu;Met. Mines,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3