Effects of Low Temperature on Pedicel Abscission and Auxin Synthesis Key Genes of Tomato

Author:

Meng Sida1234,Xiang Hengzuo1234,Yang Xiaoru1234,Ye Yunzhu1234,Han Leilei1234,Xu Tao1234,Liu Yufeng1234,Wang Feng1234,Tan Changhua1234,Qi Mingfang1234,Li Tianlai1234

Affiliation:

1. College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2. Modern Protected Horticulture Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China

3. National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China

4. Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China

Abstract

Cold stress usually causes the abscission of floral organs and a decline in fruit setting rate, seriously reducing tomato yield. Auxin is one of the key hormones that affects the abscission of plant floral organs; the YUCCA (YUC) family is a key gene in the auxin biosynthesis pathway, but there are few research reports on the abscission of tomato flower organs. This experiment found that, under low temperature stress, the expression of auxin synthesis genes increased in stamens but decreased in pistils. Low temperature treatment decreased pollen vigor and pollen germination rate. Low night temperature reduced the tomato fruit setting rate and led to parthenocarpy, and the treatment effect was most obvious in the early stage of tomato pollen development. The abscission rate of tomato pTRV-Slfzy3 and pTRV-Slfzy5 silenced plants was higher than that of the control, which is the key auxin synthesis gene affecting the abscission rate. The expression of Solyc07g043580 was down-regulated after low night temperature treatment. Solyc07g043580 encodes the bHLH-type transcription factor SlPIF4. It has been reported that PIF4 regulates the expression of auxin synthesis and synthesis genes, and is a key protein in the interaction between low temperature stress and light in regulating plant development.

Funder

National Natural Science Foundation of China

2021 Scientific Research Funding Project of Liaoning Provincial Department of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3