Quantitative Proteomic and Phosphoproteomic Profiling of Lung Tissues from Pulmonary Arterial Hypertension Rat Model

Author:

Luo Ang1ORCID,Jia Yangfan1,Hao Rongrong1,Yu Yafang1,Zhou Xia1,Gu Chenxin1,Ren Meijuan2,Tang Haiyang1ORCID

Affiliation:

1. College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China

2. Life Science Research Core Service, Northwest A&F University, Xianyang 712100, China

Abstract

Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3