DInSAR Multi-Temporal Analysis for the Characterization of Ground Deformations Related to Tectonic Processes in the Region of Bucaramanga, Colombia

Author:

Valencia Ortiz Joaquín Andrés1ORCID,Martínez-Graña Antonio Miguel1ORCID,Cabero Morán María Teresa2

Affiliation:

1. Department of Geology, Faculty of Sciences, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain

2. Department of Statistics, Faculty of Sciences, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain

Abstract

The analysis of the degree of surface deformation can be a relevant aspect in the study of surface stability conditions, as it provides added value in the construction of risk management plans. This analysis provides the opportunity to establish the behaviors of the internal dynamics of the earth and its effects on the surface as a prediction tool for possible future effects. To this end, this study was approached through the analysis of Synthetic Aperture Radar (SAR) images using the Differential Interferometry (DInSAR) technique, which, in turn, is supported by the Small Baseline Subset (SBAS) technique to take advantage of the orbital separation of the Sentinel-1 satellite images in ascending and descending trajectory between the years 2014 and 2021. As a result, a time series was obtained in which there is a maximum uplift of 117.5 mm (LOS-ascending) or 49.3 mm (LOS-descending) and a maximum subsidence of −86.2 mm (LOS-ascending) or −71.5 mm (LOS-descending), with an oscillating behavior. These deformation conditions are largely associated with the kinematics of the Bucaramanga Fault, but a recurrent action of deep seismic activity from the Bucaramanga Seismic Nest was also observed, generating a surface deformation of ±20 mm for the period evaluated. These deformations have a certain degree of impact on the generation of mass movements, evaluated by the correlation with the LOS-descending images. However, their action is more focused as an inherent factor of great weight, which makes it possible to respond to early care and allows real-time follow-up, giving positive feedback to the system.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3