Characterization of a Graphene Oxide-Reinforced Whey Hydrogel as an Eco-Friendly Absorbent for Food Packaging

Author:

Purcea Lopes Pompilia Mioara1ORCID,Moldovan Dumitrita1ORCID,Fechete Radu1ORCID,Mare Liviu1,Barbu-Tudoran Lucian2ORCID,Sechel Niculina3,Popescu Violeta1ORCID

Affiliation:

1. Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania

2. Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University of Cluj-Napoca, 1 M. Kogalniceanu Street, 400347 Cluj-Napoca, Romania

3. Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania

Abstract

This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10−3% and 3.33×10−3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10−3% and 33.33×10−3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.

Funder

European Social Fund financing agreement

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3