A Label-Free Droplet Sorting Platform Integrating Dielectrophoretic Separation for Estimating Bacterial Antimicrobial Resistance

Author:

Yan Jia-De1ORCID,Yang Chiou-Ying2ORCID,Han Arum345ORCID,Wu Ching-Chou167ORCID

Affiliation:

1. Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 402, Taiwan

2. Institute of Molecular Biology, National Chung Hsing University, Taichung City 402, Taiwan

3. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

4. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA

5. Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA

6. Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan

7. Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan

Abstract

Antimicrobial resistance (AMR) has become a crucial global health issue. Antibiotic-resistant bacteria can survive after antibiotic treatments, lowering drug efficacy and increasing lethal risks. A microfluidic water-in-oil emulsion droplet system can entrap microorganisms and antibiotics within the tiny bioreactor, separate from the surroundings, enabling independent assays that can be performed in a high-throughput manner. This study presents the development of a label-free dielectrophoresis (DEP)-based microfluidic platform to sort droplets that co-encapsulate Escherichia coli (E. coli) and ampicillin (Amp) and droplets that co-encapsulate Amp-resistant (AmpR) E. coli with Amp only based on the conductivity-dependent DEP force (FDEP) without the assistance of optical analyses. The 9.4% low conductivity (LC) Luria–Bertani (LB) broth diluted with 170 mM mannitol can maintain E. coli and AmpR E. coli growth for 3 h and allow Amp to kill almost all E. coli, which can significantly increase the LCLB conductivity by about 100 μS/cm. Therefore, the AmpR E. coli/9.4%LCLB/Amp where no cells are killed and the E. coli/9.4%LCLB/Amp-containing droplets where most of the cells are killed can be sorted based on this conductivity difference at an applied electric field of 2 MHz and 100 Vpp that generates positive FDEP. Moreover, the sorting ratio significantly decreased to about 50% when the population of AmpR E. coli was equal to or higher than 50% in droplets. The conductivity-dependent DEP-based sorting platform exhibits promising potential to probe the ratio of AmpR E. coli in an unknown bacterial sample by using the sorting ratio as an index.

Funder

National Science and Technology Council (NSTC), Taiwan

Ministry of Education (MOE) in Taiwan

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3