Ginsenoside Rg5 Sensitizes Paclitaxel—Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel—And Enhances the Anticancer Effect of Paclitaxel

Author:

Ramesh JananiORCID,Thilakan Rejani ChalikkaranORCID,Gopalakrishnan Raja MohanORCID,Vijayapoopathi Singaravel,Dorschel Arianna,Venugopal Bhuvarahamurthy

Abstract

In cervical cancer chemotherapy, paclitaxel (PTX) chemoresistance has become a major difficulty, and it also affects the survival rate of numerous tumor patients. Thus, for the reversal of chemoresistance, it is imperative to develop combinatory drugs with petite or almost no side effects to sensitize cells to paclitaxel. Ginsenoside Rg5 (GRg5) may act as a chemosensitizer by reversing multidrug resistance. The present study aimed to determine the potential of GRg5 as a chemosensitizer in PTX-resistant human cervical adeno-carcinoma cell lines (HeLa cells). MTT assay was carried out to assess whether GRg5 can potentiate the cytotoxic effect of PTX in PTX- resistant HeLa cells; using flow cytometry-based annexin V-FITC assay, cellular apoptosis was analyzed; the rate of expression of the cell cycle, apoptosis and major cell-survival-signaling-related genes and its proteins were examined using RT-PCR and Western blotting technique. We found increased mRNA expression of Bak, Bax, Bid, and PUMA genes, whereas the mRNA expression of Bcl2, Bcl-XL, c-IAP-1, and MCL-1 were low; GRg5 combination triggered the efficacy of paclitaxel, which led to increased expression of Bax with an enhanced caspase-9/-3 activation, and apoptosis. Moreover, the study supports GRg5 as an inhibitor of two key signaling proteins, Akt and NF-κB, by which GRg5 augments the susceptibility of cervical cancer cells to PTX chemotherapy. GRg5 drastically potentiated the antiproliferative and pro-apoptotic activity of paclitaxel in PTX-resistant human cervical cancer cells in a synergistic mode. Moreover, in the clinical context, combining paclitaxel with GRg5 may prove to be a new approach for enhancing the efficacy of the paclitaxel.

Funder

UGC

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3