Abstract
Analysis of complex DNA mixtures comprised of related individuals requires a great degree of care due to the increased risk of falsely including non-donor first-degree relatives. Although alternative likelihood ratio (LR) propositions that may aid in the analysis of these difficult cases can be employed, the prior information required for their use is not always known, nor do these alternative propositions always prevent false inclusions. For example, with a father/mother/child mixture, conditioning the mixture on the presence of one of the parents is recommended. However, the definitive presence of the parent(s) is not always known and an assumption of their presence in the mixture may not be objectively justifiable. Additionally, the high level of allele sharing seen with familial mixtures leads to an increased risk of underestimating the number of contributors (NOC) to a mixture. Therefore, fully resolving and identifying each of the individuals present in familial mixtures and excluding related non-donors is an important goal of the mixture deconvolution process and can be of great investigative value. Here, firstly, we further investigated and confirmed the problems encountered with standard bulk analysis of familial mixtures and demonstrated the ability of single cell analysis to fully distinguish first-degree relatives (FDR). Then, separation of each of the individual donors via single cell analysis was carried out by a combination of direct single cell subsampling (DSCS), enhanced DNA typing, and probabilistic genotyping, and applied to three complex familial 4-person mixtures resulting in a probative gain of LR for all donors and an accurate determination of the NOC. Significantly, non-donor first-degree relatives that were falsely included (LRs > 102–108) by a standard bulk sampling and analysis approach were no longer falsely included using DSCS.
Subject
Genetics (clinical),Genetics
Reference28 articles.
1. relMix: An open source software for DNA mixtures with related contributors
2. Considering relatives when assessing the evidential strength of mixed DNA profiles
3. Relatedness and DNA: are we taking it seriously enough?
4. A description of the likelihood ratios in the probabilistic genotyping software
STRmix
™
5. Oregon State Police Forensic Sciences Divison Portland Metro Laboratory Validation—STR Casework Analysis Using GlobalFiler, the 3500xl, and STRmix. Validation Study for STR Analysishttps://indefenseof.us/uploads/Oregon-State-Police-Portland-Metro-Lab-DNA-Val-067-GlobalFiler-STRmix-Summary_Redacted.pdf
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献