Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys

Author:

Li Yan,Ma Qingshan,Shi Xiaoyuan,Yuan Wenmin,Liu Guiqin,Wang ChangfaORCID

Abstract

The skeletal muscle fiber profile is closely related to livestock meat quality. However, the molecular mechanisms determining muscle fiber types in donkeys are not completely understood. In this study, we selected the psoas major muscle (PM; mainly composed of oxidative-type muscle fibers) and biceps femoris muscle (BF; mainly composed of glycolytic-type muscle fibers) and systematically compared their mRNA and microRNA transcriptomes via RNA-seq. We identified a total of 2881 differentially expressed genes (DEGs) and 21 known differentially expressed miRNAs (DEmiRs). Furthermore, functional enrichment analysis showed that the DEGs were mainly involved in energy metabolism and actin cytoskeleton regulation. The glycolysis/gluconeogenesis pathway (including up-regulated genes such as PKM, LDHA, PGK1 and ALDOA) was more highly enriched in BF, whereas the oxidative phosphorylation pathway and cardiac muscle contraction (including down-regulated genes such as LDHB, ATP2A2, myosin-7 (MYH7), TNNC1, TPM3 and TNNI1) was more enriched in PM. Additionally, we identified several candidate miRNA–mRNA pairs that might regulate muscle fiber types using the integrated miRNA–mRNA analysis. Combined with the results of protein–protein interaction (PPI) analysis, some interesting DEGs (including ACTN3, TNNT3, TPM2, TNNC2, PKM, TNNC1 and TNNI1) might be potential candidate target genes involved in the miRNA-mediated regulation of the myofibril composition. This study is the first to indicate that DEmiRs, especially eca-miR-193a-5p and eca-miR-370, and potential candidate target genes that are mainly involved in actin binding (e.g., ACTN3, TNNT3 and TNNC1) and the glycolysis/gluconeogenesis pathways (e.g., PKM) might coregulate the myofibril composition in donkeys. This study may provide useful information for improving meat quality traits in Dezhou donkeys.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3