MicroRNA-132-3p, Downregulated in Myeloid Angiogenic Cells from Hereditary Hemorrhagic Telangiectasia Patients, Is Enriched in the TGFβ and PI3K/AKT Signalling Pathways

Author:

Cannavicci AnthonyORCID,Zhang Qiuwang,Faughnan Marie E.,Kutryk Michael J. B.

Abstract

Background. Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant genetic disorder characterized by life-threatening vascular dysplasia. Myeloid angiogenic cells (MACs), alternatively called early endothelial progenitor cells or circulating angiogenic cells, do not directly incorporate into developing blood vessels, but augment angiogenesis in a paracrine manner. MAC dysfunction has been reported in HHT. MicroRNAs (miRNAs) regulate cellular function by modulating gene expression post-transcriptionally. To date, the role of miRNAs in HHT MAC dysfunction has not been documented. Objective. The goal of this study was to comparatively profile miRNAs in HHT patient and control MACs to identify dysregulated miRNAs that may be responsible for the observed MAC dysfunction in HHT. Methodology/Results. Twenty-three dysregulated miRNAs (twenty-one upregulated and two downregulated) in HHT MACs were identified with a TaqMan miRNA microarray. Pathway enrichment analysis showed that the dysregulated miRNAs were significantly enriched in pathways involved in HHT pathogenesis, such as the transforming growth factor β (TGFβ), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Hippo signalling pathways. Furthermore, miR-132-3p was determined to be significantly reduced in HHT MACs compared with controls by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Bioinformatic analysis revealed that miR-132-3p is significantly enriched in the TGFβ and PI3K/AKT signalling pathways, targeting SMAD4, an effector of the TGFβ signalling pathway and RASA1, a negative regulator of the PI3K/AKT signalling pathway, respectively. Conclusion. MiRNA dysregulation, specifically reduced expression of miR-132-3p, in HHT MACs was identified. The dysregulated miRNAs are significantly enriched in the TGFβ, PI3K/AKT, and Hippo signalling pathways. These data suggest that alteration in miRNA expression may impair these pathways and contribute to MAC dysfunction in HHT.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3