EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot

Author:

Feleke Aberham GenetuORCID,Bi Luzheng,Fei Weijie

Abstract

(1) Background: Three-dimensional (3-D) hand position is one of the kinematic parameters that can be inferred from Electromyography (EMG) signals. The inferred parameter is used as a communication channel in human–robot collaboration applications. Although its application from the perspective of rehabilitation and assistive technologies are widely studied, there are few papers on its application involving healthy subjects such as intelligent manufacturing and skill transfer. In this regard, for tasks associated with complex hand trajectories without the consideration of the degree of freedom (DOF), the prediction of 3-D hand position from EMG signal alone has not been addressed. (2) Objective: The primary aim of this study is to propose a model to predict human motor intention that can be used as information from human to robot. Therefore, the prediction of a 3-D hand position directly from the EMG signal for complex trajectories of hand movement, without the direct consideration of joint movements, is studied. In addition, the effects of slow and fast motions on the accuracy of the prediction model are analyzed. (3) Methods: This study used the EMG signal that is collected from the upper limb of healthy subjects, and the position signal of the hand while the subjects manipulate complex trajectories. We considered and analyzed two types of tasks with complex trajectories, each with quick and slow motions. A recurrent fuzzy neural network (RFNN) model was constructed to predict the 3-D position of the hand from the features of EMG signals alone. We used the Pearson correlation coefficient (CC) and normalized root mean square error (NRMSE) as performance metrics. (4) Results: We found that 3-D hand positions of the complex movement can be predicted with the mean performance of CC = 0.85 and NRMSE = 0.105. The 3-D hand position can be predicted well within a future time of 250 ms, from the EMG signal alone. Even though tasks performed under quick motion had a better prediction performance; the statistical difference in the accuracy of prediction between quick and slow motion was insignificant. Concerning the prediction model, we found that RFNN has a good performance in decoding for the time-varying system. (5) Conclusions: In this paper, irrespective of the speed of the motion, the 3-D hand position is predicted from the EMG signal alone. The proposed approach can be used in human–robot collaboration applications to enhance the natural interaction between a human and a robot.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3