Post-Processing of High Formwork Monitoring Data Based on the Back Propagation Neural Networks Model and the Autoregressive—Moving-Average Model

Author:

Yang YangORCID,Yang Lin,Yao Gang

Abstract

Many high formwork systems are currently equipped with health monitoring systems, and the analysis of the data obtained can determine whether high formwork is a hazard. Therefore, the post-processing of monitoring data has become an issue of widespread concern. In this paper, we discussed the fitting effect of the symmetrical high formwork monitoring data using the autoregressive–moving-average (ARMA) model and the back propagation neural networks (BPNN) combined model to process. In the actual project, the symmetry of the high formwork system allows the analysis of local monitoring results to be well extended to the whole. For the establishment of the ARMA model, the accurate judgment of the model order has a significant impact. In this paper, back propagation neural networks (BPNN) are used to simulate the ARMA process. The order of the ARMA model is estimated by determining the optimal neural network structure, which is suitable for linear or nonlinear sequences. We validated this approach from the ARMA model data simulated in Monte Carlo and compared it with the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The length of the sequence, the coefficients and the order of the ARMA model are considered as factors that influence the judgment effect. Under different conditions, the BPNN always shows an accuracy rate of more than 90%, while the BIC only has a higher accuracy rate when the model order is low and the judgment efficiency of the AIC is below 50%. Finally, the proposed method successfully modeled the stress sequence and obtained the stress change trend. Compared with AIC and BIC, the efficiency of the processing time series is increased by about 50% when an order is obtained by BPNN.

Funder

National Key R&D Program of the Ministry of Science and Technology

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3