Conversion of Ethanol to Butadiene over Binary MgO-SiO2 Mixed Oxides Prepared by the Ammonia Evaporation Method

Author:

Samsudin Ismail Bin1ORCID,Jaenicke Stephan1ORCID,Chuah Gaik-Khuan1ORCID

Affiliation:

1. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Kent Ridge, Singapore 117543, Singapore

Abstract

The ammonia evaporation method, originally applied for the preparation of highly dispersed silica-supported copper catalysts, was used to synthesize magnesia-silica for the one-step conversion of ethanol to 1,3-butadiene. The MgO-SiO2 catalysts obtained by this method contained a high fraction of magnesium silicate hydrates, which are associated with enhanced butadiene selectivity. These catalysts were benchmarked against those prepared by a conventional wet-kneading method. A Mg/Si molar ratio of 4 was optimal, forming butadiene with 37% yield, which is far superior to the 15% yield obtained with MgO-SiO2 formed by wet-kneading. At 475 °C and a WHSV of 3.2 h−1, a productivity of 0.612 gBD gcat−1 h−1 was measured without the catalyst suffering from deactivation, even after 52 h TOS. The catalysts were characterized by spectroscopic and thermal techniques to elucidate their physicochemical properties and explain the differences in the catalytic performance. The presence of magnesium silicate hydrates gave a balance of surface acidity and basicity, which greatly improved butadiene formation. The open morphology of MgO-SiO2 with vertically arranged platelets and the presence of large pores are proposed to contribute to the stability of the catalyst.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

Reference67 articles.

1. Green chemistry: Principles, applications, and disadvantages;Ali;Chem. Methodol.,2020

2. The periodic table of the elements of green and sustainable chemistry;Anastas;Green Chem.,2019

3. Designing for a green chemistry future;Zimmerman;Science,2020

4. Sun, H.N., and Wristers, J.P. (2004). Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-Interscience. [5th ed.].

5. (2021, January 10). Global Butadiene Market Overview (2014–2025). Available online: https://prismaneconsulting.com/blog_details/101/Global-Butadiene-Market-Overview-(2014-2025).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3