Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference

Author:

Li Shang1,Yu Fei1ORCID,Zhang Shankou1,Yin Huige1,Lin Hairong2ORCID

Affiliation:

1. School of Computer Science and Technology, Changsha University of Science and Technology, Changsha 410076, China

2. School of Electronic Information, Central South University, Changsha 410083, China

Abstract

In deep learning, convolutional layers typically bear the majority of the computational workload and are often the primary contributors to performance bottlenecks. The widely used convolution algorithm is based on the IM2COL transform to take advantage of the highly optimized GEMM (General Matrix Multiplication) kernel acceleration, using the highly optimized BLAS (Basic Linear Algebra Subroutine) library, which tends to incur additional memory overhead. Recent studies have indicated that direct convolution approaches can outperform traditional convolution implementations without additional memory overhead. In this paper, we propose a high-performance implementation of the direct convolution algorithm for inference that preserves the channel-first data layout of the convolutional layer inputs/outputs. We evaluate the performance of our proposed algorithm on a multi-core ARM CPU platform and compare it with state-of-the-art convolution optimization techniques. Experimental results demonstrate that our new algorithm performs better across the evaluated scenarios and platforms.

Funder

National Key Research and Development Program “National Quality Infrastructure System” Special Project

Hefei Minglong Electronic Technology Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3