Modulation of Spheroid Forming Capacity and TRAIL Sensitivity by KLF4 and Nanog in Gastric Cancer Cells

Author:

To Han Thi NgocORCID,Le Qui AnhORCID,Bui Hang Thi Thuy,Park Ji-HongORCID,Kang DongchulORCID

Abstract

The expression of pluripotency factors, and their associations with clinicopathological parameters and drug response have been described in various cancers, including gastric cancer. This study investigated the association of pluripotency factor expression with the clinicopathological characteristics of gastric cancer patients, as well as changes in the expression of these factors upon the stem cell-enriching spheroid culture of gastric cancer cells, regulation of sphere-forming capacity, and response to cisplatin and TRAIL treatments by Nanog and KLF4. Nanog expression was significantly associated with the emergence of a new tumor and a worse prognosis in gastric cancer patients. The expression of the pluripotency factors varied among six gastric cancer cells. KLF4 and Nanog were expressed high in SNU-601, whereas SOX2 was expressed high in SNU-484. The expression of KLF4 and SOX2 was increased upon the spheroid culture of SNU-601 (KLF4/Nanog-high) and SNU-638 (KLF4/Nanog-low). The spheroid culture of them enhanced TRAIL-induced viability reduction, which was accompanied by the upregulation of death receptors, DR4 and DR5. Knockdown and overexpression of Nanog in SNU-601 and SNU-638, respectively, did not affect spheroid-forming capacity, however, its expression was inversely correlated with DR4/DR5 expression and TRAIL sensitivity. In contrast, KLF4 overexpression in SNU-638 increased spheroid formation, susceptibility to cisplatin and TRAIL treatments, and DR4/DR5 expression, while the opposite was found in KLF4-silenced SNU-601. KLF4 is supposed to play a critical role in DR4/DR5 expression and responses to TRAIL and cisplatin, whereas Nanog is only implicated in the former events only. Direct regulation of death receptor expression and TRAIL response by KLF4 and Nanog have not been well documented previously, and the regulatory mechanism behind the process remains to be elucidated.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Reference50 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer J. Clin.,2021

2. Global Burden of 5 Major Types of Gas-trointestinal Cancer;Arnold;Gastroenterology,2020

3. New drug developments in metastatic gastric cancer;Tan;Ther. Adv. Gastroenterol.,2018

4. Cancer stem cells: The root of tumor recurrence and metastases;Peitzsch;Semin. Cancer Biol.,2017

5. Cancer stem cells: A brief review of the current status;Gene,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3