A Model for Estimating the Earth’s Outgoing Radiative Flux from A Moon-Based Radiometer

Author:

Zhang Yuan12ORCID,Dewitte Steven2,Bi Shengshan1

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium

Abstract

A Moon-based radiometer can provide continuous measurements for the Earth’s full-disk broadband irradiance, which is useful for studying the Earth’s Radiation Budget (ERB) at the height of the Top of the Atmosphere (TOA). The ERB describes how the Earth obtains solar energy and emits energy to space through the outgoing broadband Short-Wave (SW) and emitted thermal Long-Wave (LW) radiation. In this work, a model for estimating the Earth’s outgoing radiative flux from the measurements of a Moon-based radiometer is established. Using the model, the full-disk LW and SW outgoing radiative flux are gained by converting the unfiltered entrance pupil irradiances (EPIs) with the help of the anisotropic characteristics of the radiances. Based on the radiative transfer equation, the unfiltered EPI time series is used to validate the established model. By comparing the simulations for a Moon-based radiometer with the satellite-based data from the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Clouds and the Earth’s Radiant Energy System (CERES) datasets, the simulations show that the daytime SW fluxes from the Moon-based measurements are expected to vary between 194 and 205 Wm−2; these simulations agree well with the CERES data. The simulations are about 5 to 20 Wm−2 smaller than the NISTAR data. For the simulated Moon-based LW fluxes, the range is 251~287 Wm−2. The Moon-based and NISTAR fluxes are consistently 5~15 Wm−2 greater than CERES LW fluxes, and both of them also show larger diurnal variations compared with the CERES fluxes. The correlation coefficients of SW fluxes for Moon-based data and NISTAR data are 0.97, 0.63, and 0.53 for the months of July, August, and September, respectively. Compared with the SW flux, the correlation of LW fluxes is more stable for the same period and the correlation coefficients are 0.87, 0.69, and 0.61 for July to September 2017.

Funder

Natural Science Basic Research Program of Shaanxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3