Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases

Author:

Cong Zhanren1ORCID,Yin Qiang1,Tian Kunhong1,Mukoma Njeru Joe1,Ouyang Liming1ORCID,Hsiang Tom2,Zhang Lixin1,Jiang Lan3,Liu Xueting1

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China

2. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

3. Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210093, China

Abstract

Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Project Funding of the State Key Laboratory of Bioreactor Engineering

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3