Vis–NIR Spectroscopy Combined with GAN Data Augmentation for Predicting Soil Nutrients in Degraded Alpine Meadows on the Qinghai–Tibet Plateau

Author:

Jiang Chuanli1,Zhao Jianyun12ORCID,Ding Yuanyuan1,Li Guorong12

Affiliation:

1. Department of Geologic Engineering, Qinghai University, Xining 810016, China

2. Key Lab of Cenozoic Resource & Environment in North Margin of the Tibetan Plateau, Xining 810016, China

Abstract

Soil nutrients play vital roles in vegetation growth and are a key indicator of land degradation. Accurate, rapid, and non-destructive measurement of the soil nutrient content is important for ecological conservation, degradation monitoring, and precision farming. Currently, visible and near-infrared (Vis–NIR) spectroscopy allows for rapid and non-destructive monitoring of soil nutrients. However, the performance of Vis–NIR inversion models is extremely dependent on the number of samples. Limited samples may lead to low prediction accuracy of the models. Therefore, modeling and prediction based on a small sample size remain a challenge. This study proposes a method for the simultaneous augmentation of soil spectral and nutrient data (total nitrogen (TN), soil organic matter (SOM), total potassium oxide (TK2O), and total phosphorus pentoxide (TP2O5)) using a generative adversarial network (GAN). The sample augmentation range and the level of accuracy improvement were also analyzed. First, 42 soil samples were collected from the pika disturbance area on the QTP. The collected soils were measured in the laboratory for Vis–NIR and TN, SOM, TK2O, and TP2O5 data. A GAN was then used to augment the soil spectral and nutrient data simultaneously. Finally, the effect of adding different numbers of generative samples to the training set on the predictive performance of a convolutional neural network (CNN) was analyzed and compared with another data augmentation method (extended multiplicative signal augmentation, EMSA). The results showed that a GAN can generate data very similar to real data and with better diversity. A total of 15, 30, 60, 120, and 240 generative samples (GAN and EMSA) were randomly selected from 300 generative samples to be included in the real data to train the CNN model. The model performance first improved and then deteriorated, and the GAN was more effective than EMSA. Further shortening the interval for adding GAN data revealed that the optimal ranges were 30–40, 50–60, 30–35, and 25–35 for TK2O, TN, TP2O5, and SOM, respectively, and the validation set accuracy was maximized in these ranges. Therefore, the above method can compensate to some extent for insufficient samples in the hyperspectral prediction of soil nutrients, and can quickly and accurately estimate the content of soil TK2O, TN, TP2O5, and SOM.

Funder

National Natural Science Foundation of China

Natural Science Foundation in Qinghai of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3