A Novel Molecularly Imprinted Sensor Based on CuO Nanoparticles with Peroxidase-like Activity for the Selective Determination of Astragaloside-IV

Author:

Chen Guo-Ying1,Chen Ling-Xiao1,Gao Jin2,Chen Chengyu2,Guan Jianli2,Cao Zhiming23,Hu Yuanjia4,Yang Feng-Qing1ORCID

Affiliation:

1. Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China

2. Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China

3. Henan Fusen Pharmaceutical Co., Ltd., Nanyang 473000, China

4. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China

Abstract

In this work, dopamine (DA) was polymerized on the surface of CuO nanoparticles (CuO NPs) to form a molecularly imprinted polymer (MIP@PDA/CuO NPs) for the colorimetric detection of astragaloside-IV (AS-IV). The synthesis process of MIP is simple and easy to operate, without adding other monomers or initiators. CuO NPs has high peroxidase (POD)-like activity that can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate oxidized TMB (OxTMB) in the presence of H2O2, having a maximum ultraviolet-visible (UV-Vis) absorption peak at 652 nm. The AS-IV can specifically bind to the surface imprinted cavities and prevent the entry of TMB and H2O2, which will lead to the inhibition of the catalytic reaction. Therefore, a new approach based on the POD-like activity of MIP@PDA/CuO NPs for AS-IV detection was developed with a linear range from 0.000341 to 1.024 mg/mL. The LOD and LOQ are 0.000991 and 0.000341 mg/mL, respectively. The developed method can accurately determine AS-IV in Huangqi Granules and different batches of Ganweikang Tablets, which are similar to the results measured by HPLC-ELSD and meet the requirements of Chinese Pharmacopoeia (2020 edition) for the amount of AS-IV in Huangqi Granules. The combination of MIP with CuO NPs not only endows the detection of AS-IV with high selectivity and reliability, but also expands the application of nanozymes in the detection of small-molecule compounds that have weak UV absorption, and do not have reducibility or oxidation properties.

Funder

Science and Technology Development Fund of Macau SAR

University of Macau

Zhuhai UM Science & Technology Research Institute

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3