Zinc Deficiency Promotes Calcification in Vascular Smooth Muscle Cells Independent of Alkaline Phosphatase Action and Partly Impacted by Pit1 Upregulation

Author:

Alcantara Ethel H.1,Kwon Jae-Hee1ORCID,Kang Min-Kyung1,Cho Young-Eun1ORCID,Kwun In-Sook1

Affiliation:

1. Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea

Abstract

Inorganic phosphate (Pi) is a critical determinant of calcification, and its concentration is regulated by alkaline phosphatase (ALP) and Pit1. ALP is a key regulator of osteogenic calcification and acts by modulating local inorganic phosphate (Pi) concentrations through hydrolyzing pyrophosphate in the extracellular matrix (ECM). Pit1, a sodium-dependent phosphate transporter, regulates calcification via facilitating phosphate uptake within the cells. To investigate whether zinc differentially regulates osteoblastic and vascular calcifications, we examined ALP activity and Pit1 in osteoblastic and vascular smooth muscle cells (VSMCs). Our findings demonstrate that calcification in osteoblastic MC3T3-E1 cells is decreased via diminished ALP action under zinc deficiency. In contrast, zinc-deficiency-induced calcification in VSMCs is independent of ALP action, as demonstrated by very weak ALP activity and expression in calcified VSMCs. In zinc-deficient A7r5 VSMC, P accumulation increased with increasing Na phosphate concentration (3–7 mM) but not with β-GP treatment, which requires ALP activity to generate Pi. Ca deposition also increased with Na phosphate in a dose-dependent manner; in contrast, β-GP did not affect Ca deposition. In osteoblastic cells, Pit1 expression was not affected by zinc treatments. In contrast, Pit1 expression is highly upregulated in A7r5 VSMC under zinc deficiency. Using phosphonoformic acid, a competitive inhibitor of Pit1, we showed that calcification is inhibited in both A7r5 and MC3T3-E1 cells, indicating a requirement for Pit1 in both calcifications. Moreover, the downregulation of VSMC markers under zinc deficiency was restored by blocking Pit1. Taken together, our results imply that zinc-deficiency-induced calcification in VSMC is independent of ALP action in contrast to osteoblastic calcification. Moreover, Pit1 expression in VSMCs is a target for zinc deficiency and may mediate the inhibition of VSMC marker expression under zinc deficiency.

Funder

Korean government

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3