Carbon Nanomaterial-Based Lubricants: Review of Recent Developments

Author:

Rahman Md MahfuzurORCID,Islam MohaiminulORCID,Roy Rakesh,Younis HassanORCID,AlNahyan Maryam,Younes HammadORCID

Abstract

This review article summarizes the progress of research on carbon nanomaterial-based lubricants witnessed in recent years. Carbon nanomaterials, such as graphene, carbon nanotubes (CNTs), fullerenes and carbon nanostructures, are at the center of current tribological research on attaining superior lubrication performance. The development of nanomaterial-based solid lubricants, lubricant additives and bulk materials and the related issues in their processing, characterization and applications as well as their tribological performance (coefficient of friction and wear rate) are listed in a structured tabulated form. Firstly, regarding nanomaterial-based solid lubricants, this study reveals that carbon nanomaterials such as graphite, graphene, graphene-based coatings and diamond-like carbon (DLC)-based coatings increase different tribological properties of solid lubricants. Secondly, this study summarizes the influence of graphene, carbon nanotubes, fullerene, carbon nanodiamonds, carbon nano-onions, carbon nanohorns and carbon spheres when they are used as an additive in lubricants. Thirdly, a structured tabulated overview is presented for the use of carbon nanomaterial-reinforced bulk material as lubricants, where graphene, carbon nanotubes and carbon nanodiamonds are used as reinforcement. Additionally, the lubricity mechanism and superlubricity of carbon nanomaterial-based lubricants is also discussed. The impact of carbon nanotubes and graphene on superlubricity is reviewed in detail. It is reported in the literature that graphene is the most prominent and widely used carbon nanomaterial in terms of all four regimes (solid lubricants, lubricating additives, bulk material reinforcement and superlubricity) for superior tribological properties. Furthermore, prospective challenges associated with lubricants based on carbon nanomaterials are identified along with future research directions.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3