Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis

Author:

Koh Yong-Gon,Lee Jin-Ah,Kang Kyoung-Tak

Abstract

The wear of tibial inserts in total knee arthroplasty (TKA) remains a major limitation of longevity. However, wear tests are expensive and time-consuming. Computational wear prediction using a finite-element (FE) model followed by validation through comparison with experimental data is effective for assessing new prosthetic designs or materials prior to functional testing and surgical implementation. In this study, the kinematics, volumetric wear, and wear depth of tibial inserts made of different materials (ultrahigh-molecular weight polyethylene (UHMWPE), polyetheretherketone (PEEK), and carbon fiber-reinforced PEEK (CFR–PEEK)) in TKA were evaluated by employing FE models and analysis. The differences among the materials were evaluated using adaptive wear modeling to predict the wear depth, volumetric wear, and kinematics under a gait loading condition. The volumetric wear and wear depth of the CFR–PEEK decreased by 87.4% and 61.3%, respectively, compared with those of the UHMWPE, whereas the PEEK exhibited increased volumetric wear and wear depth. These results suggest that CFR–PEEK is a good alternative to UHMWPE as a promising and suitable material for tibial inserts used in TKA. However, orthopedic research should be performed to evaluate the threshold conditions and appropriate applications for the newly developed and introduced biomaterial.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3