Effect of Rotational Speed on Tribological Properties of Carbon Fiber-Reinforced Al-Si Alloy Matrix Composites

Author:

Tang Feng1ORCID,Pan Xiaotao1,Deng Yafei1,Zhou Zhenquan1,Zeng Guoxun1,Xiao Sinong1

Affiliation:

1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Porous carbon fiber-reinforced Al-Si alloy matrix composites and carbon fiber felt-reinforced Al-Si alloy matrix composites with carbon content of 10 wt.% were prepared by die casting. The dry tribological properties of these two composites and Al-Si alloy were studied using a ball-on-disc rotational tribometer in the rotational speed range of 300 r/min to 1000 r/min, and the wear mechanisms were analyzed in combination with the wear morphology. The results show that the friction coefficient and wear rate of these two composites are lower than the Al-Si alloy at different speeds. With the increase in rotational speed, the friction coefficient of the two composites and Al-Si alloy first increases and then decreases, and the wear rate gradually increases. The wear mechanisms of the two composites and Al-Si alloy change from abrasive wear and adhesive wear to delamination wear, but the node speed of the change in the wear mechanism of the composites to delamination wear is higher, and the wear degree is relatively slight. In addition, the comprehensive tribological properties of carbon fiber felt-reinforced Al-Si alloy matrix composites are better than the porous carbon fiber-reinforced Al-Si alloy matrix composites.

Funder

Provincial Technical Transformation Investment Project Foundation of Guangdong, China

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3