Effect of Electroplastic-Assisted Grinding on Surface Quality of Ductile Iron

Author:

Feng Shuo1,Jia Dongzhou1,Zhang Yanbin2,Wu Xiaoqiang3,Guo Erkuo4,Xue Rui5,Gong Taiyan6,Yang Haijun6,Li Xiaoxue3,Jiang Xin37

Affiliation:

1. College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China

2. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

3. School of Mechanical and Traffic Engineering, Ordos Institute of Technology, Ordos Avenue East, Ordos 017000, China

4. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

5. Tianjin TANHAS Technol Co., Ltd., Tianjin 301000, China

6. The First Machinery Group, Inner Mongolia Ruite Precision Mould Co., Ltd., Baotou 014030, China

7. Department of Mechanics, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

Ductile iron is a heterogeneous material. The presence of spherical graphite and a hard and brittle structure makes the surface of the workpiece easily form pits and crack defects under harsh grinding conditions, which seriously affects the service life and service performance of the workpiece. The new assisted grinding process based on the electroplastic effect is expected to avoid the surface defects of ductile iron. By comparing the surface roughness and microstructure of conventional grinding and electroplastic-assisted grinding, the superiority of electroplastic-assisted grinding surface quality is confirmed. Further discussion is presented on the impact of grinding parameters on the workpiece’s surface quality under the same electrical parameters. The results show that the sensitivity of surface roughness to grinding parameters from strong to weak is grinding wheel speed, feed speed and grinding depth. The optimal combination of grinding parameters is determined as a grinding wheel speed of 30 m/s, a feed speed of 0.5 m/min and a grinding depth of 10 μm.

Funder

China Postdoctoral Science Foundation Funded Project

Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Liaoning Provincial Natural Science Foundation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3