CXCL8 Promotes Endothelial-to-Mesenchymal Transition of Endothelial Cells and Protects Cells from Erastin-Induced Ferroptosis via CXCR2-Mediated Activation of the NF-κB Signaling Pathway

Author:

Ji Hai-zhou1,Chen Li1,Ren Mi2,Li Sang1,Liu Tong-yu1,Chen Hong-ju1,Yu Hui-hui1,Sun Yang1

Affiliation:

1. Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China

2. Department of Oncological Nursing, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China

Abstract

CXCL8-CXCR1/CXCR2 signaling pathways might form complex crosstalk among different cell types within the ovarian tumor microenvironment, thereby modulating the behaviors of different cells. This study aimed to investigate the expression pattern of CXCL8 in the ovarian tumor microenvironment and its impact on both endothelial-to-mesenchymal transition (EndMT) and ferroptosis of endothelial cells. The human monocytic cell line THP-1 and the human umbilical vein endothelial cell line PUMC-HUVEC-T1 were used to conduct in vitro studies. Erastin was used to induce ferroptosis. Results showed that tumor-associated macrophages are the major source of CXCL8 in the tumor microenvironment. CXCL8 treatment promoted the nucleus entrance of NF-κB p65 and p65 phosphorylation via CXCR2 in endothelial cells, suggesting activated NF-κB signaling. Via the NF-κB signaling pathway, CXCL8 enhanced TGF-β1-induced EndMT of PUMC-HUVEC-T1 cells and elevated their expression of SLC7A11 and GPX4. These trends were drastically weakened in groups with CXCR2 knockdown or SB225002 treatment. TPCA-1 reversed CXCL8-induced upregulation of SLC7A11 and GPX4. CXCL8 protected endothelial cells from erastin-induced ferroptosis. However, these protective effects were largely canceled when CXCR2 was knocked down. In summary, CXCL8 can activate the NF-κB signaling pathway in endothelial cells in a CXCR2-dependent manner. The CXCL8-CXCR2/NF-κB axis can enhance EndMT and activate SLC7A11 and GPX4 expression, protecting endothelial cells from ferroptosis.

Funder

2021 Fujian Provincial Science and Technology Innovation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3