Comparative Analysis with Statistical and Machine Learning for Modeling Overall and High Salinity along the Scheldt Estuary

Author:

Zhu Boli1ORCID,Wang Tingli1ORCID,De Meester Joke1ORCID,Willems Patrick1ORCID

Affiliation:

1. Hydraulics and Geotechnics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Heverlee, Belgium

Abstract

Saltwater intrusion is an essential problem in estuaries that can threaten the ecological environment, especially in high-salinity situations. Therefore in this paper, traditional multiple linear regression (MLR) and artificial neural network (ANN) modeling are applied to forecast overall and high salinity in the Lower Scheldt Estuary, Belgium. Mutual information (MI) and conditional mutual information (CMI) are used to select optimal driving forces (DFs), with the daily discharge (Q), daily water temperature (WT), and daily sea level (SL) selected as the main DFs. Next, we analyze whether applying a discrete wavelet transform (DWT) to remove the noise from the original time series improves the results. Here, the DWT is applied in Signal-hybrid (SH) and Within-hybrid (WH) frameworks. Both the MLR and ANN models demonstrate satisfactory performance in daily overall salinity simulation over the Scheldt Estuary. The relatively complex ANN models outperform MLR because of their capabilities of capturing complex interactions. Because the nonlinear relationship between salinity and DFs is variable at different locations, the performance of the MLR models in the midstream region is far inferior to that in the downstream region during spring and winter. The results reveal that the application of DWT enhances simulation of both overall and high salinity in this region, especially for the ANN model with the WH framework. With the effect of Q decline or SL rise, the salinity in the middle Scheldt Estuary increases more significantly, and the ANN models are more sensitive to these perturbations.

Funder

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3