Modeling of the Progressive Degradation of the Nigrostriatal Dopaminergic System in Mice to Study the Mechanisms of Neurodegeneration and Neuroplasticity in Parkinson’s Disease

Author:

Kolacheva AnnaORCID,Bannikova Alyona,Pavlova Ekaterina,Bogdanov Vsevolod,Ugrumov Michael

Abstract

The fight against neurodegenerative diseases, including Parkinson’s disease (PD), is among the global challenges of the 21st century. The low efficiency of therapy is due to the late diagnosis and treatment of PD, which take place when there is already significant degradation of the nigrostriatal dopaminergic system, a key link in the regulation of motor function. We have developed a subchronic mouse model of PD by repeatedly administering 1–methyl–4–phenyl–1,2,3,6–tetrahydropyridine (MPTP) at gradually increasing doses with a 24 h interval between injections, a period comparable to the time of MPTP metabolism and elimination from the body. This model reproduces the main hallmarks of PD: progressive degeneration of dopaminergic neurons; the appearance of motor disorders with a 70–80% decrease in the level of dopamine in the striatum; an increase in dopamine turnover in the striatum to compensate for dopamine deficiency. When comparing the degradation of the nigrostriatal dopaminergic system and motor disorders in mice in the acute and subchronic models of PD, it has turned out that the resistance of dopaminergic neurons to MPTP increases with its repeated administration. Our subchronic model of PD opens up broad prospects for studying the molecular mechanisms of PD pathogenesis and developing technologies for early diagnosis and preventive treatment.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3