Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells

Author:

Algazlan Almaha S.ORCID,Almuraikhi NihalORCID,Muthurangan ManikandanORCID,Balto Hanan,Alsalleeh FahdORCID

Abstract

This study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone or in combination with calcium hydroxide (Ca(OH)2) on the proliferation, viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different concentrations of AgNPs alone or mixed with Ca(OH)2 were prepared. Cell proliferation was measured using AlamarBlue, and hMSCs attachment to dentin disks was evaluated using scanning electron microscopy. Live–dead imaging was performed to assess apoptosis. Wound healing ability was determined using the scratch-migration assay. To evaluate osteogenic differentiation, the expression of Runt-related transcription factor (RUNX2), Transforming growth factor beta-1 (TGF-β1), Alkaline Phosphatase (ALP), and Osteocalcin (OCN) were measured using real-time reverse transcriptase polymerase chain reaction. ALP staining and activity were also performed as indicators of osteogenic differentiation. AgNPs alone seemed to favor cell attachment. Lower concentrations of AgNPs enhanced cell proliferation. AgNP groups showed markedly less apoptosis. None of the medicaments had adverse effects on wound closure. The expression of TGF-β1 was significantly upregulated in all groups, and OCN was highly expressed in the AgNP groups. AgNPs 0.06% showed the most enhanced ALP gene expression levels, activity, and marked cytochemical staining. In conclusion, AgNPs positively affect hMSCs, making them a potential biomaterial for various clinical applications.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3