Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts

Author:

Bernar Aline,Gebetsberger Jennifer Viktoria,Bauer Monika,Streif Werner,Schirmer MichaelORCID

Abstract

The alizarin red S assay is considered the gold standard for quantification of osteoblast mineralization and is thus widely used among scientists. However, there are several restrictions to this method, e.g., moderate sensitivity makes it difficult to uncover slight but significant effects of potentially clinically relevant substances. Therefore, an adaptation of the staining method is appropriate and might be obtained by increasing the mineralization ability of osteoblasts. In this study, cell culture experiments with human (SaOs-2) and murine (MC3T3-E1) osteoblasts were performed under the addition of increasing concentrations of calcium chloride (1, 2.5, 5, and 10 mM) or calcitonin (1, 2.5, 5, and 10 nM). After three or four weeks, the mineralization matrix was stained with alizarin red S and the concentration was quantified photometrically. Only calcium chloride was able to significantly increase mineralization, and therefore enhanced the sensitivity of the alizarin red S staining in a dose-dependent manner in both osteoblastic cell lines as well as independent of the cell culture well surface area. This cost- and time-efficient optimization enables a more sensitive analysis of potentially clinically relevant substances in future bone research.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference31 articles.

1. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells;Sasso;Biomed. Res. Int.,2015

2. Cellular and molecular mechanisms of bone remodeling;Raggatt;J. Biol. Chem.,2010

3. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling;Tobeiha;Biomed. Res. Int.,2020

4. Osteoblast and osteocyte: Games without frontiers;Capulli;Arch. Biochem. Biophys.,2014

5. Real-Time Vital Mineralization Detection and Quantification during In Vitro Osteoblast Differentiation;Serguienko;Biol. Proced. Online,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3