Multiple-Collision Free-Electron Laser Compton Backscattering for a High-Yield Gamma-Ray Source

Author:

Sei NorihiroORCID,Ogawa HiroshiORCID,Jia QiKa

Abstract

We observed multiple-collision free-electron laser (FEL)-Compton backscattering in which a multi-bunch electron beam makes head-on collisions with multi-pulse FELs in an optical cavity, using an infrared FEL system in the storage ring NIJI-IV. It was demonstrated that the measured spectrum of the multiple-collision FEL-Compton backscattering gamma rays was the summation of the spectra of the gamma rays generated at each collision point. Moreover, it was demonstrated that the spatial distribution of the multiple-collision FEL-Compton backscattering gamma rays was the summation of those of the gamma rays generated at each collision point. Our experimental results proved quantitatively that the multiple collisions in the FEL-Compton backscattering process are effective in increasing the yield of the gamma rays. By applying the multiple-collision FEL-Compton backscattering to high-repetition FEL devices such as energy recovery linac FELs, an unprecedented high-yield gamma-ray source with quasi-monochromaticity and wavelength tunability will be realized.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atomistic modeling and characterizaion of light sources based on small-amplitude short-period periodically bent crystals;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2023-04

2. Extremely brilliant crystal-based light sources;The European Physical Journal D;2022-09

3. Novel Light Sources Beyond FELs;Lecture Notes in Nanoscale Science and Technology;2022

4. Light Sources at High Photon Energies;Particle Acceleration and Detection;2022

5. Bibliometric Study on Particle Emissions of Natural and Alternative Building Materials;Climate Emergency – Managing, Building , and Delivering the Sustainable Development Goals;2021-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3