Mathematical Modeling of Collisional Heat Generation and Convective Heat Transfer Problem for Single Spherical Body in Oscillating Boundaries

Author:

Son Kwon Joong1ORCID

Affiliation:

1. Department of Mechanical and Design Engineering, Hongik University, Sejong 30016, Republic of Korea

Abstract

The application of high-energy ball milling in the field of advanced materials processing, such as mechanochemical alloying and ammonia synthesis, has been gaining increasing attention beyond its traditional use in material crushing. It is important to recognize the role of thermodynamics in high-energy processes, including heat generation from collisions, as well as ongoing investigations into grinding ball behavior. This study aims to develop a mathematical model for the numerical analysis of a spherical ball in a shaker mill, taking into account its dynamics, contact mechanics, thermodynamics, and heat transfer. The complexity of the problem for mathematical modeling is reduced by limiting the motion to one-dimensional translation and representing the vibration of the vial wall in a shaker mill as rigid boundaries that move in a linear fashion. A nonlinear viscoelastic contact model is employed to construct a heat generation model. An equation of internal energy evolution is derived that incorporates a velocity-dependent heat convection model. In coupled field modeling, equations of motion for high-energy impact phenomena are derived from energy-based Hamiltonian mechanics rather than vector-based Newtonian mechanics. The numerical integration of the governing equations is performed at the system level to analyze the general heating characteristics during collisions and the effect of various operational parameters, such as the oscillation frequency and amplitude of the vial. The results of the numerical analysis provide essential performance metrics, including steady-state temperature and time constant for the characteristics of temperature evolution for a high-energy shaker milling process with a computation accuracy of 0.1%. The novelty of this modeling study is that it is the first to obtain such a high accuracy numerical solution for the temperature evolution associated with a shaker mill process.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3