Propagation of Cosmic Rays in Plasmoids of AGN Jets-Implications for Multimessenger Predictions

Author:

Becker Tjus JuliaORCID,Hörbe Mario,Jaroschewski Ilja,Reichherzer PatrickORCID,Rhode Wolfgang,Schroller Marcel,Schüssler FabianORCID

Abstract

After the successful detection of cosmic high-energy neutrinos, the field of multiwavelength photon studies of active galactic nuclei (AGN) is entering an exciting new phase. The first hint of a possible neutrino signal from the blazar TXS 0506+056 leads to the anticipation that AGN could soon be identified as point sources of high-energy neutrino radiation, representing another messenger signature besides the established photon signature. To understand the complex flaring behavior at multiwavelengths, a genuine theoretical understanding needs to be developed. These observations of the electromagnetic spectrum and neutrinos can only be interpreted fully when the charged, relativistic particles responsible for the different emissions are modeled properly. The description of the propagation of cosmic rays in a magnetized plasma is a complex question that can only be answered when analyzing the transport regimes of cosmic rays in a quantitative way. In this paper, therefore, a quantitative analysis of the propagation regimes of cosmic rays is presented in the approach that is most commonly used to model non-thermal emission signatures from blazars, i.e., the existence of a high-energy cosmic-ray population in a relativistic plasmoid traveling along the jet axis. It is shown that in the considered energy range of high-energy photon and neutrino emission, the transition between diffusive and ballistic propagation takes place, significantly influencing not only the spectral energy distribution, but also the lightcurve of blazar flares.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3