Simulation-Based Fault Detection Remote Monitoring System for Small-Scale Photovoltaic Systems

Author:

Lim Hee-WonORCID,Kim Il-KwonORCID,Kim Ji-Hyeon,Shin U-Cheul

Abstract

A small-scale grid-connected PV system that is easy to install and is inexpensive as a remote monitoring system may cause economic losses if its failure is not found and it is left unattended for a long time. Thus, in this study, we developed a low-cost fault detection remote monitoring system for small-scale grid-connected PV systems. This active monitoring system equipped with a simulation-based fault detection algorithm accurately predicts AC power under normal operating conditions and notifies its failure when the measured power is abnormally low. In order to lower the cost, we used a single board computer (SBC) with edge computing as a data server and designed a monitoring system using openHAB, an open-source software. Additionally, we used the Shewhart control chart as a fault detection criterion and the ratio between the measured and predicted ac power for the normal operation data as an observation. As a result of the verification test for the actual grid-connected PV system, it was confirmed that the developed remote monitoring system was able to accurately identify the system failures in real-time, such as open circuit, short circuit, partial shading, etc.

Funder

Ministry of Agriculture, Food, and Rural Affairs

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. New procedure for fault detection in grid-connected PV systems based on the evaluation of current and voltage indicators;Silvestre;Energy Convers. Manag.,2014

2. The monitoring system of photovoltaic module using fault diagnosis sensor;Park;J. Korean Sol. Energy Soc.,2016

3. IoT-based mobile smart monitoring system for solar power generation;Lee;J. Inst. Electron. Inf. Eng.,2017

4. An efficient fault diagnosis method for PV systems following string current;Hazra;J. Clean. Prod.,2017

5. The monitoring system with PV module-level fault diagnosis algorithm;Ko;J. Korean Sol. Energy Soc.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3