Antibiofilm Property and Biocompatibility of Siloxane-Based Polymer Coatings Applied to Biomaterials

Author:

Ogawa Akiko1ORCID,Tahori Akane1,Yano Mayumi1,Hirobe Shunma2,Terada Satoshi2,Kanematsu Hideyuki3ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan

2. Faculty of Engineering, Division of Engineering Applied Chemistry and Biochemistry, University of Fukui, Fukui 910-0017, Japan

3. Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan

Abstract

Biofilm infections sometimes occur on biomaterials inserted into the body because biomaterials can block the attack of immune cells such as macrophages, promoting biofilm formation by invading bacteria. Owing to their use in antifouling applications, including biofilm formation, siloxane-based polymer coatings are considered a promising method to prevent biofilm formation on the surface of biomaterials. In this study, we explored the antibiofilm property and biocompatibility of siloxane-based polymer coatings. Biofilm formation and cytotoxicity tests were performed using Escherichia coli and Staphylococcus epidermidis to quantify the biofilms while U937 cells were used to measure the time course of viable cell concentration and viability, respectively. In both the biofilm formation and cytotoxicity tests, stainless steel SUS316L plates and titanium plates coated with the siloxane-based polymer and sterilized in an autoclave were used as the biomaterials. The amount of biofilm formed on the polymer-coated titanium plate was substantially higher than that on a noncoated titanium plate in the case of S. epidermidis. The viable cell concentration and viability of U937 cultured on the polymer-coated titanium plate were lower than those of U937 cultured on the noncoated titanium plate. The same trend was observed between polymer-coated and noncoated SUS316L plates. These results indicate that the siloxane-based polymer coatings need additional treatment to achieve a satisfactory antibiofilm property and that they are sensitive to autoclave treatment, resulting in cytotoxicity.

Funder

Japan Society for the Promotion of Science

Materials Unit of the KOSEN GEAR 5.0 Development Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3