Model Based Control Method for Diesel Engine Combustion

Author:

Wang Hu,Zhong Xin,Ma Tianyu,Zheng Zunqing,Yao MingfaORCID

Abstract

With the increase of information processing speed, more and more engine optimization work can be processed automatically. The quick-response closed-loop control method is becoming an urgent demand for the combustion control of modern internal combustion engines. In this paper, artificial neural network (ANN) and polynomial functions are used to predict the emission and engine performance based on seven parameters extracted from the in-cylinder pressure trace information of over 3000 cases. Based on the prediction model, the optimal combustion parameters are found with two different intelligent algorithms, including genetical algorithm and fish swarm algorithm. The results show that combination of quadratic function with genetical algorithm is able to obtain the appropriate combustion control parameters. Both engine emissions and thermal efficiency can be virtually predicted in a much faster way, such that enables a promising way to achieve fast and reliable closed-loop combustion control.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3