Ensemble Prediction Method Based on Decomposition–Reconstitution–Integration for COVID-19 Outbreak Prediction

Author:

Ke Wenhui1ORCID,Lu Yimin1

Affiliation:

1. Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, National Engineering Research Centre of Geospatial Information Technology, Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China

Abstract

Due to the non-linear and non-stationary nature of daily new 2019 coronavirus disease (COVID-19) case time series, existing prediction methods struggle to accurately forecast the number of daily new cases. To address this problem, a hybrid prediction framework is proposed in this study, which combines ensemble empirical mode decomposition (EEMD), fuzzy entropy (FE) reconstruction, and a CNN-LSTM-ATT hybrid network model. This new framework, named EEMD-FE-CNN-LSTM-ATT, is applied to predict the number of daily new COVID-19 cases. This study focuses on the daily new case dataset from the United States as the research subject to validate the feasibility of the proposed prediction framework. The results show that EEMD-FE-CNN-LSTM-ATT outperforms other baseline models in all evaluation metrics, demonstrating its efficacy in handling the non-linear and non-stationary epidemic time series. Furthermore, the generalizability of the proposed hybrid framework is validated on datasets from France and Russia. The proposed hybrid framework offers a new approach for predicting the COVID-19 pandemic, providing important technical support for future infectious disease forecasting.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Special Projects of the Central Government Guiding Local Science and Technology Development

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3