Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles

Author:

Arkhypov Ihor,Lasser Samantha,Petrova Vera,Weber Rebekka,Groth Christopher,Utikal JochenORCID,Altevogt Peter,Umansky ViktorORCID

Abstract

Extracellular vesicles (EV) can carry proteins, RNA and DNA, thus serving as communication tools between cells. Tumor cells secrete EV, which can be taken up by surrounding cells in the tumor microenvironment as well as by cells in distant organs. Tumor-derived EV (TEV) contain factors induced by tumor-associated hypoxia such as heat shock proteins or a variety of microRNA (miRNA). The interaction of TEV with tumor and host cells can promote cancer angiogenesis, invasion and metastasis. Myeloid cells are widely presented in tissues, comprise the majority of immune cells and play an essential role in immune reactions and tissue remodeling. However, in cancer, the differentiation of myeloid cells and their functions are impaired, resulting in tumor promotion. Such alterations are due to chronic inflammatory conditions associated with cancer and are mediated by the tumor secretome, including TEV. A high capacity of myeloid cells to clear EV from circulation put them in the central position in EV-mediated formation of pre-metastatic niches. The exposure of myeloid cells to TEV could trigger numerous signaling pathways. Progenitors of myeloid cells alter their differentiation upon the contact with TEV, resulting in the generation of myeloid-derived suppressor cells (MDSC), inhibiting anti-tumor function of T and natural killer (NK) cells and promoting thereby tumor progression. Furthermore, TEV can augment MDSC immunosuppressive capacity. Different subsets of mature myeloid cells such as monocytes, macrophages, dendritic cells (DC) and granulocytes take up TEV and acquire a protumorigenic phenotype. However, the delivery of tumor antigens to DC by TEV was shown to enhance their immunostimulatory capacity. The present review will discuss a diverse and complex EV-mediated crosstalk between tumor and myeloid cells in the context of the tumor type, TEV-associated cargo molecules and type of recipient cells.

Funder

Deutsche Forschungsgemeinschaft

German Cancer Research Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3